Ø Razón entre dos números
Razón entre dos números a y b es el cociente
|
Por ejemplo la razón entre 10 y 2 es 5, ya que
Y la razón entre los números 0.15 y 0.3 es
Ø Proporción numérica
Los números a, b, c y d forman una proporción si la razón entre a y b es la misma que entre c y d.
Es decir
Se lee “a es a b como c es a d”
|
Los números 2, 5 y 8, 20 forman una proporción, ya que la razón entre 2 y 5 es la misma que la razón entre 8 y 20.
Es decir
En la proporción hay cuatro términos; a y d se llaman extremos, c y b se llaman medios.
La propiedad fundamental de las proporciones es: en toda proporción, el producto de los extremos es igual al de los medios.
Así en la proporción anterior se cumple que el producto de los extremos nos da 2x20=40 y el producto de los medios nos da 5x8=40
EN GENERAL
|
Si dos magnitudes son tales que a doble, triple... cantidad de la primera correspondedoble, triple... de la segunda, entonces se dice que esas magnitudes son directamente proporcionales.
|
Dos magnitudes cuyas cantidades se corresponden según la siguiente tabla:
son directamente proporcionales si se cumple que:
|
Ejemplo
Un saco de patatas pesa 20 kg. ¿Cuánto pesan 2 sacos?
Un cargamento de patatas pesa 520 kg ¿Cuántos sacos se podrán hacer?
Número de sacos
|
1
|
2
|
3
|
...
|
26
|
...
|
Peso en kg
|
20
|
40
|
60
|
...
|
520
|
...
|
Para pasar de la 1ª fila a la 2ª basta multiplicar por 20
Para pasar de la 2ª fila a la 1ª dividimos por 20
Observa que
Las magnitudes número de sacos y peso en kg son directamente proporcionales.
La constante de proporcionalidad para pasar de número de sacos a kg es 20.
Ejemplo 1
En 50 litros de agua de mar hay 1300 gramos de sal. ¿Cuántos litros de agua de mar contendrán 5200 gramos de sal?
Como en doble cantidad de agua de mar habrá doble cantidad de sal; en triple, triple, etc. Las magnitudes cantidad de agua y cantidad de sal son directamente proporcionales.
Si representamos por x el número de litros que contendrá 5200 gramos de sal, y formamos la siguiente tabla:
Litros de agua
|
50
|
x
|
Gramos de sal
|
1300
|
5200
|
Se verifica la proporción:
Y como en toda proporción el producto de medios es igual al producto de extremos, resulta:
50.5200=1300.x
Es decir
En la práctica esto se suele disponer del siguiente modo:
Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple directa.
|
Ejemplo 2
Un coche gasta 5 litros de gasolina cada 100 km. Si quedan en el depósito 6 litros, ¿cuántos kilómetros podrá recorrer el coche?
Luego con 6 litros el coche recorrerá 120 km
Si dos magnitudes son tales que a doble, triple...cantidad de la primera corresponde lamitad, la tercera parte... de la segunda, entonces se dice que esas magnitudes soninversamente proporcionales.
|
Dos magnitudes cuyas cantidades se corresponden según la siguiente tabla:
son inversamente proporcionales si se verifica que:
a.a’ = b.b’ = c.c’ = ...
|
Ejemplo
Si 3 hombres necesitan 24 días para hacer un trabajo, ¿cuántos días emplearán 18 hombres para realizar el mismo trabajo?
En este caso a doble número de trabajadores, el trabajo durará la mitad; a triple número de trabajadores, el trabajo durará la tercera parte, etc. Por tanto las magnitudes son inversamente proporcionales.
Formamos la tabla:
Hombres
|
3
|
6
|
9
|
...
|
18
|
Días
|
24
|
12
|
8
|
...
|
?
|
Vemos que los productos 3.24=6.12=9.8=72
Por tanto 18.x=72
O sea que los 18 hombres tardarán 4 días en hacer el trabajo
Ejemplo 1
Un ganadero tiene pienso suficiente para alimentar 220 vacas durante 45 días. ¿Cuántos días podrá alimentar con la misma cantidad de pienso a 450 vacas?
Vemos que con el mismo pienso, si el número de vacas se duplica, tendrá para la mitad de días; a triple número de vacas, tercera parte de días, etc. Por tanto son magnitudes inversamente proporcionales.
x= número de días para el que tendrán comida las 450 vacas
Nº de vacas
|
220
|
450
|
Nº de días
|
45
|
x
|
Se cumple que: 220.45=450.x, de donde
En la práctica esto se suele disponer del siguiente modo:
Luego 450 vacas podrán comer 22 días
Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple inversa.
|
Ejemplo 2
Para envasar cierta cantidad de vino se necesitan 8 toneles de 200 litros de capacidad cada uno. Queremos envasar la misma cantidad de vino empleando 32 toneles. ¿Cuál deberá ser la capacidad de esos toneles?
Pues la cantidad de vino=8.200=32.x
Debemos tener 32 toneles de 50 litros de capacidad para poder envasar la misma cantidad de vino.
Ø Regla de tres compuesta. Método de reducción a la unidad
Ejemplo 1: Proporcionalidad directa
Cuatro chicos en una acampada de 10 días han gastado en comer 25000 ptas. En las mismas condiciones ¿cuánto gastarán en comer 6 chicos durante una acampada de 15 días?
§ Doble número de chicos acampados el mismo número de días gastarán el doble. Luego las magnitudes número de chicos y dinero gastado son directamente proporcionales.
§ El mismo número de chicos, si acampan el doble número de días gastarán el doble. Luego las magnitudes número de días de acampada y dinero gastado son directamente proporcionales.
Hemos relacionado las dos magnitudes conocidas, nº de chicos y nº de días con la cantidad desconocida, gasto.
SABEMOS QUE
| |
REDUCCIÓN A LA UNIDAD
| |
BÚSQUEDA DEL RESULTADO
| |
Ejemplo 2: Proporcionalidad inversa
15 obreros trabajando 6 horas diarias, tardan 30 días en realizar un trabajo. ¿Cuántos días tardarán en hacer el mismo trabajo 10 obreros, empleando 8 horas diarias?
§ Doble número de obreros trabajando el mismo número de días trabajarán la mitad de horas al día para realizar el trabajo. Por tanto el número de obreros y el número de días de trabajo son inversamente proporcionales.
§ Doble número de horas diarias de trabajo el mismo número de obreros tardarán la mitad de días en realizar el trabajo. Luego el número de horas diarias de trabajo y el número de días de trabajo son inversamente proporcionales.
Hemos relacionado las dos magnitudes conocidas, nº de obreros y nº de horas diarias de trabajo, con la cantidad desconocida, nº de días de trabajo.
SABEMOS QUE
| |
REDUCCIÓN A LA UNIDAD
| |
BÚSQUEDA DEL RESULTADO
| |
Por tanto, 10 obreros empleando 8 horas diarias tardarán 33.75 días.
No hay comentarios:
Publicar un comentario